Error in Computational Tools

- Mathematically, we know that

$$
10^{-16}=1+10^{-16}-1
$$

Error in Computational Tools

- Mathematically, we know that

$$
10^{-16}=1+10^{-16}-1
$$

```
>> 1+10^(-14)
ans =
    1.0000
>> 1+10^(-15)
ans =
    1.0000
>> 1+10^(-16)
ans =
    1
```


Error in Computational Tools

- Mathematically, we know that

$$
10^{-16}=1+10^{-16}-1
$$

```
>> log10(10^(-16))
ans =
    -16
>> log10(1+10^(-16)-1)
ans =
    - Inf
```


Error in Computational Tools

- Now, let's work on expression of the form

$$
\left(1+\frac{1}{10^{k}}\right)^{10^{k}}
$$

>> $\mathrm{k}=14$; $\left(1+10^{\wedge}(-k)\right)^{\wedge}(10 \wedge \mathrm{k})$ ans $=$
2.716110034087023
>> $\mathrm{k}=15$; ($1+10 \wedge(-k))^{\wedge}(10 \wedge \mathrm{k})$ ans $=$
3.035035206549262
>> $k=16$; $(1+10 \wedge(-k))^{\wedge(10 \wedge k) ~}$ ans $=$

1

Error in Computational Tools

- Now, let's work on expression of the form

Theoretically, when k is large, we know that this expression should converge to $e^{1}=e \approx 2.7183$.

$$
\left(1+\frac{1}{10^{k}}\right)^{10^{k}}
$$

```
>> k = 14; (1+10^(-k) )^(10^k)
ans =
    2.716110034087023
>> k = 15; (1+10^(-k))^(10^k)
ans =
    3.035035206549262
>> k = 16; (1+10^(-k))^(10^k)
ans =
    1
```


Accuracy of Floating-Point Data

- Computers only represent numbers to a finite precision.
- Computations sometimes yield mathematically nonintuitive results.
- Almost all operations in MATLAB are performed in doubleprecision arithmetic conforming to the IEEE standard 754.

- The real value assumed by a given 64-bit double-precision datum with a given biased exponent e and a 52 -bit fraction is

$$
(-1)^{\operatorname{sign}}\left(1 . b_{51} b_{50} \ldots b_{0}\right)_{2} \times 2^{e-1023}
$$

Double-Precision Accuracy

- Because there are only a finite number of double-precision numbers, you cannot represent all numbers in double-precision storage.
- On any computer, there is a small gap between each doubleprecision number and the next larger double-precision number.
- You can determine the size of this gap, which limits the precision of your results, using the eps function.
- This machine epsilon gives an upper bound on the relative error due to rounding in floating point arithmetic.
- For example, to find the distance between 1 and the next larger double-precision number, enter

```
>> format long
>> eps(1)
ans =
    2.220446049250313e-16
```


Probability Calculation for Binomial RV

- For binomial RV, probability are of the form

$$
\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- For example, when $x=0$, we have

$$
\binom{n}{0} p^{0}(1-p)^{n-0}=(1-p)^{n}
$$

- When is p small, the number $1-p$ may not be accurately represented.

Probability Calculation for Binomial RV

- For binomial RV, probability are of the form

$$
\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- For example, when $x=0$, we have

$$
\binom{n}{0} p^{0}(1-p)^{n-0}=(1-p)^{n}
$$

- When is p small, the number $1-p$ may not be accurately represented.
- Consider $p=\frac{1}{10^{k}}$ and $n=10^{k}$.

Probability Calculation for Binomial RV

- $(1-p)^{n}$ when $p=\frac{1}{10^{k}}$ and $n=10^{k}$.

Probability Calculation for Binomial RV

- $(1-p)^{n}$ when $p=\frac{1}{10^{k}}$ and $n=10^{k}$.

Theoretically, when k is large, we know that this expression should converge to $e^{-1} \approx 0.3679$.

